Skip to main content

Farm with Mother Nature. By: Gerry Weber

“The right to search for the truth implies also a duty; one must not conceal any part of what one has recognised to be true” – Albert Einstein

How can we as humans get it so wrong, so often? And when people warn us about the consequences of our actions – we still want to defend our right to make money and to further destroy and harm the environment along with ourselves? Humans cannot function without nature or the natural systems that support all living organisms, from the tiny bacteria in the soil through to the largest mammals. Everything and everyone is interconnected and interdependent on other species for survival. Let’s talk about how to farm with mother nature.

There is a meme that showcases a pristine beach, captioned “Animals were here.

The second picture shows rubbish in all forms: plastic bottles, bags, cigarette butts – basically a mess. It states “Humans were here.” Let’s behave like animals…

Farmers and consumers

We live in a disconnected world where the number of friends we have, are counted as a figure on social media and the number of likes a post gets, determines our popularity. It’s a world where the farmer produces food for somebody he doesn’t know, and the consumer buys food – even ready-made food – that is mass-produced and has a list of ingredients that nobody cares to read because they are not comprehensible.

In much the same way, the farmer has become disconnected from the soil and uses management practices that inherently harm the soil. He is locked into a system where, if he continues with the various management practices, he will have to continue buying the various products that destroy the soil biology. This makes him more dependent on the use of chemicals and mass-produced seeds. In the end, he has no control over his input costs, nor over his selling price.

Farmers know this already and gripe about it, but do not necessarily know what to do about it. Their fear of change eclipses possible solutions, often right at their doorstep. Will Rogers once said: “If you find yourself in a hole, quit digging.”

Farm with mother nature

The Emperor’s Clothes

There’s a classic yet fitting fairy tale by Hans Christian Anderson called The Emperor’s Clothes. In this tale two weavers conned the emperor into believing that they make the best clothes. Only people who  really appreciated their work, could see the clothes. The Emperor paid large amounts of money to the two weavers for his new wardrobe.

He wanted to parade his new wardrobe to his subjects, so he got dressed in his magnificent ‘’invisible” clothes. Everybody praised the emperor for how wonderful he looked. That is, until a small boy in the crowd mentioned the obvious: The emperor had no clothes on – leaving him embarrassed and knowing that he had been taken for a ride.

Is this what has happened in the agricultural sector? That science thought they can produce crops with chemical usage, the various herbicides, pesticides, and GMO crops better than what the natural, evolved system can – with all its diversity?

How do we farm with mother nature?

We must stop fooling ourselves and start realising the unfavourable effects we have on the natural ecosystems through our modern, destructive agricultural systems. We are destroying our soil and are becoming more and more reliant on a handful of companies for the answer. Like the weavers in our story, these are the companies who are making the farmer more and more dependent on their products whilst convincing them that without their products, they cannot feed the world.

No single farmer can feed the world. It’s not happening now, and it will never happen. We are already producing enough food – it’s just that 33% of all produced food is wasted.

The consumer must reconnect with his/her food source, and the farmer with the soil.

Our human minds are always reductive. When we see a pest, we want to kill or destroy it, but in the natural world, there is always a stable predator-prey relationship. When we kill the pest, we also indirectly kill the predator. However, we then only replant food for the pest and we must, once again, apply a pesticide to kill the pest. Subsequently the pest becomes resistant and we must change to a different, much harsher pesticide or start applying more than the recommended dose onto our crops. Ultimately, the predator will not return because we always take away its food source.

We are already applying neonicotinoids to the seeds, while the pesticide and herbicide cocktails are becoming harsher for the crop to withstand the onslaught of pests and weeds. The neonicotinoids and various other chemicals we use in agriculture are destroying our insects and specifically the pollinators which will have a catastrophic effect in the long run.

Chemical manufacturing companies have no answer to the weed, pest or disease resistance which is so evident in all modern agriculture. Think of the chemical cocktails used for various diseases, pests, and weeds. It is only a matter of time before resistance builds up again… what then?

What about GMOs?

They have been heralded as the epitome of agricultural science. Anybody who has ever spoken out against GMOs and its safety risks, has been criticised as ‘not for science’ and that they have no idea what they are talking about (similar to the  weavers’ influencing of the emperor). The method of inserting a gene code from a different species to achieve a certain result is not accurate and will never be, due to the makeup of the double-stranded DNA helix.

Scientists have sold it as though there is no difference between this unnatural gene manipulation and what happens in nature. Like when DNA matter is interchanged between certain organisms or when an egg gets manually fertilised by a sperm.

There are checks and balances in the natural world that prevent certain DNA combinations from surviving or certain gene sequences from expressing what they are coded for – unlike the GMOs we produce in a lab. We cannot correctly determine where the inclusion of a specific code will be inserted. No GMO has been tested or trialled for a long enough period to be recognised as safe.

Let’s take the BT gene for example, a GMO corn plant engineered to withstand army worms. In nature the toxin is expressed when there is a threat, which is normal. The toxin is denatured when it encounters UV light, and when the threat passes, the bacillus spores stop excreting the toxin. This means a genetic code is in place to stop the excretion of the toxin.

What happens in a GMO plant?

In the GMO plant, however, this does not happen. The gene is encoded into the plant’s genetic makeup so that the plant continuously excretes the toxin – even if there is no threat – not so normal. Scientists could not have predicted the unforeseen consequences : not only do we have army worm that is resistant to the BT toxin, but the energy consumption of the plant is higher because every cell of the plant excretes the toxin continuously. The other unforeseen consequence is environmental contamination via the continued excretion of the BT gene, in both aquatic and soil biology.

Another unforeseen consequence GMOs have, is that plant roots are losing their relationship to the soil. We already face problems with the nutrient density of various cash crops. This decline in nutrient density has been well documented, in both plant and meat harvests.

The soil biology provides a plethora of micronutrients on an on-demand basis. We must believe in the ability of nature which has provided these nutrients over millennia, to carry on doing so. We must not destroy these systems that sustain all living creatures.

How often do farmers say “we cannot farm without GMOs or the use of glyphosate; how would we make money?” The chemical agriculture industry has managed to lock farmers into a cycle where they do not see any alternative other than chemical agricultural management systems, where yields are the only determining factor.

Banks do not bank yields!

Why, in the 21st century should we have laws that monitor chemicals in our food? Have we regressed with modern science to such an extent that we now feed chemicals to all our production animals and ourselves? The argument is always “we must manage the risk” – that’s no argument! The environmental, social and economic cost is so distorted, that the price we pay for a few companies to profit from an industry they are exploiting far exceeds the benefits we receive from their products.

We know what the consequences are when consuming these chemicals and what result they have on all living systems, from the bacteria in the soil to the most isolated individuals and predators in the world. Carcinogens and endocrine disruptors have affected all of us; diseases like diabetes and auto-immune diseases are on the increase. How far must we contaminate the environment, and all in the name of science?

The chemicals affect the fertility and the gut systems of our production animals, pollinators and in the end, us humans. We must stop thinking that our conventional farming management systems have no effect on the environment.

Jane Goodall once said: “You cannot get through a single day without having an impact on the world around you. What you do makes a difference, and you have to decide what kind of difference you want to make.”

The price we pay for our human actions:

Environmental costs

  • Air
  • Water
  • Soil
  • Diversity decline in the form of wildlife, birds and insects

Social costs

  • Human health issues like chronic conditions, auto-immune diseases, cancer

Economical costs

  • Wasted tax money
  • Subsidies
  • Increased input costs

Soil erosion

There is a lot of talk in South Africa about soil erosion and the detrimental impact it has on land and water resources. It is critical to understand that although soil erosion is a naturally occurring process, humans have the potential to accelerate or counteract soil erosion through land management practices. For example, vegetation clearing, overgrazing and soil tillage will accelerate erosion, whilst using cover crops, rotational grazing and no-till practices can halt soil erosion.

Soil is a critical resource to all land-based practices, particularly agriculture. It is important to realise that soil is a finite and non-renewable resource, with soil formation a very slow process. Estimates show that the soil formation rate in South Africa is around 5 tons/ha/year, while the average soil loss rate is around 12.5-13tons/ha/year on agricultural land. Clearly, this is unsustainable.

The impact of soil erosion is large and far-reaching. The loss of fertile topsoil not only results in an increase in food production costs and loss of arable land; it also pollutes water resources through sedimentation and contaminants, such as herbicides and pesticides. To grasp how much of an issue this is, consider the Welbedacht dam. Siltation resulted in the storage capacity of the dam dropping from 115 million cubic meters to 16 million cubic meters between 1973 and 1993.A horrifying decrease of around 86%. Considering our reliance on dams during the dry season and droughts, it is crucial that we are able to store as much water as possible when we receive good rains.

Soil Compaction

Have you ever tested soil compaction due to tillage? In simple terms, the first rainwater penetrates the soil but depending on the rain, the surface is sealed, and the next rain event cannot penetrate as effectively, causing run-off and further erosion. There are many videos and examples where it is shown that water penetration and water retention are improved when using no-till and minimal disturbance both mechanically and chemically. How often are animals blamed for soil compaction, and left out of a cash crop field? Yet the compaction caused around the drinking and feeding troughs is mitigated by the biological processes that the animals stimulate when grazing either cover crops or harvest rests on the cash crop field.

Our dependence on fossil fuels and chemicals is at an all-time high. When will the system collapse? Every time we try and control nature, our input costs increase. This is true in all spheres of life. Chemical agriculture also tried to control nature with its whole arsenal and lost. Yes, farmers’ yields have improved, and it is mind boggling to see by how much. Worldwide the yields have probably doubled. But, have the farmers profited? No, they have not. No matter how TV shows like Mega Boere paint a picture of the effectiveness of these farmers, their risk of producing a crop increases yearly with every rising input cost and the decline in profit margins. Furthermore, if we take the changing weather patterns such as prolonged droughts and less (but stronger) rainfall events into account, we are conning ourselves into thinking that we have food security.

Can we farm with mother nature rather than against her?

The short answer is yes. But, to get there will be a lengthy process as we would need to turn around years of destruction and plundering that are so evident in conventional agriculture. We cannot expect to heal the land within one season, nor can we only implement no-till and think we’ve arrived.

Nature is a wickedly complex system. We must maximise the biological processes that she supplies with our limited knowledge of the soil and the effects, relationships, and interactions that all living species have with (and on) each other. From the soil microbes, interactions with various plants, the symbiotic relationships of its exudates and which bacteria they stimulate, to the effect that the largest mammals have on the soil microbiome. We as humans with our finite thinking don’t know everything; and we cannot control what we don’t know. Besides, if you want to control it, you still cannot predict the unforeseen consequences that your actions might have.

Changing over to a biological farming system takes time – you really cannot think that everything will change in a year. Changing over is a marathon, not a sprint. It is a lifelong commitment that revolves around the understanding of soil health and how to increase the carbon levels. There is no end game. Don’t stagnate, and never think you’ve arrived or “I’m now at the pinnacle”. We don’t yet know what the pinnacle is, and I doubt we ever will.

What are our tools and what management practices can we use?

Let’s take the five principles of soil health as described in Gabe Brown’s book, Dirt to Soil:

  1. Minimum disturbance both chemically and mechanically
  2. Armour through soil cover
  3. Build diversity
  4. Living roots
  5. Integrate animals

To achieve these five principles will take time. Management systems must be improved gradually, so that all five components can be achieved and implemented successfully. Doing everything at once will lead to a disaster. You will blame the system and not your application of the principles. There is no silver bullet in any business – especially not in a system that we don’t fully comprehend or understand.

We have to start somewhere and understanding why we must change is far more important than how we apply it.

Farmers need to fully comprehend what effects conventional agriculture has alongside all the unforeseen consequences. We also need to acknowledge the fact that we can improve soil health and find out what the benefits and biological advantages are.

One of the quickest ways of improving soil health on a cash crop field is through cover crops and animal integration. Just planting a cover crop for the sake of a cover crop will simply lead to frustration. You also need to know what you want to achieve with that cover crop.

Benefits a cover crop should offer:

  • Increase soil organic matter
  • Parasite control – nematodes
  • Fodder
  • Cover
  • Recuperate mineral deficiency
  • Improve predator-prey relationship

This can be achieved by looking at how many hectares of cover crops can be planted during the normal cash crop period, followed by another cover crop in the off season. If this is done over a period of two years, it can break the parasite cycle for the next cash crop. The cash crop can then be harvested with animals, in turn justifying the cost through their growth.

When changing over, realise that your management system will intensify. There is no program or a chart that you can implement from your neighbour. You have to build your own unique management system and see how your management style affects your implementation and rate thereof. Continuously educate yourself. Nobody’s education stops when they finish school, university or college; we must learn something every day to improve on what we knew yesterday.

Regenerative Agriculture – Farm with mother nature

Regenerative agriculture is nothing new – it has been done for centuries. Finding information nowadays is the easiest it has ever been. If you just take to Google, YouTube or social media, it’s easy to find people sharing their experiences on rebuilding their soil. There are many fascinating books written about this topic. It is amazing how much farmers love to tell stories about how they rebuilt the soil and their profitability, how they heal the land, their relationships, their community and their people.

Your mindset must change to see that everything you do agriculturally, has an influence on soil health. The healthier your soil becomes, the lower your input costs will be, ultimately driving your profitability. Most farmers get stuck in the fear that their yields will drop. Yield has nothing to do with profitability, but we have swindled ourselves into thinking it is the measure of success or effectiveness.

Dr. James Blignaut mentioned at the Reitz Landbou Weekblad conference in 2019, that the west of South Africa will have to change over to regenerative agriculture, or their profit margins will decrease over time. The sooner you start with your own education process to see what has been done in certain areas and, more importantly, what must be done in your area to improve soil health, the better for you and the future of your farm.

It does not matter what farming enterprise you run- you are dependent on soil health.

We should view the five principles of soil health collectively and not as five individual points implemented independently.

Minimal disturbance

This is probably the most self-explanatory; certain farmers have successfully implemented the no-till practice years already. Where they do fail is that they don’t realise chemical inputs are also part of this equation. Inorganic fertilisers, pesticides and herbicides have a huge detrimental effect both on the soil microbes and the environment at large. Inorganic fertilisers have an enormous effect on agricultural water contamination. The use of inorganic nitrogen when planting, shuts down the root exudates that are vital to the soil bacteria. Basically, your all-round effort must be aimed towards soil health and water retention.

Armour

Keep your soil covered with organic matter. This cools it down, so that the microbial life has a better chance of survival. Fallow fields that are ploughed or disked for weed control are detrimental to both the soil microbiology and water retention.

Building diversity

This is relevant in all aspects from plants, animals, insects to birds and wildlife. Life creates life, we should embrace this instead of following our destructive habits. Soil and the environment are living beings which are destroyed by killing everything other than the cash crop or the production animal. The unforeseen consequences that have been unleashed by the use of chemical agriculture, as is evident today, are frightening.

Diversifying farming operations where crop rotation, intercropping or inter-seeding, pollinator strips, cover crops and a variety of animals are integrated to control both weeds and pests, will result in minimal input costs and healthier food for the consumer.

Predator-prey relationships in a microbial world

Importantly, we must also sustain and regenerate the predator-prey relationship on farms. We have tried to destroy our pests with chemicals for far too long, yet we have failed. How many resistant pests (weeds, fungal, bacterial) have we created in crop production, animal production and in human health? We have lost the war against the microbial world.

Through building diversity, the whole system becomes more robust and the immune systems of plants, production animals and ultimately human health, will improve. The water harvesting capability of soil improves, along with water retention, so that cash crops can withstand the droughts and increased temperatures.

Furthermore, building diversity among animals through a stacking technique will improve resilience  by having ruminants which are followed by monogastric animals for pest control. This can be used to achieve more than one income stream, but also uses animals to contain certain pests. It kills two flies with one swat (pardon the pun).

The biological processes that are activated when combining animals, cover crops and cash crops in various rotations on a cash crop field are incredible. Several farmers have already implemented the five principles of soil health and have successfully reduced their diesel usage per hectare by a massive 70% – all without dropping their yields!

Living roots (cover crops)

These are probably the cheapest and easiest way to improve soil health. Simply plant and give them a fair chance to grow, so they can reach their full potential. Planting the cover crop only in the off season and hoping for a game changer is not the answer. Plant a section of your cash crop fields in the rainy season so that the soil can start regenerating. Remember – keep a mindset of what is beneficial to soil health.

Employing a multi-species cover crop onto the field is also more beneficial than just adding a mono-cover crop. The various root exudates stimulate a larger diversity of micro-organisms. In the long run, it increases soil carbon, organic matter, various mineral cycles and, most importantly, the water cycle (both water retention and penetration).

Integrating animals

Nature doesn’t work without animals. To really appreciate the biological benefits that the appropriate animal impact provides both on the natural veld and on cash crop fields, it must be experienced. Using grazing methods where cattle forage non-selectively has a very positive impact on the veld, increasing species diversity both in grasses and forbs. Many farmers whom have seen natural legumes return to their veld just applied the correct grazing method.

One of the biggest mistakes in the South African beef industry is to understock and overgraze. Why is beef farming not as profitable as it should be? The answer is simple: we have bred animals according to the “you must feed to breed” mantra. Because of the long history of mismanagement like understocking and overgrazing, the natural veld has lost its vigour. Biological processes have declined to such an extent that farmers now have to feed their animals to produce any offspring.

What about cash crop farming?

Cash crop farmers also use cattle as a bank. When the cash crop fails, they then sell cattle to make up the short fall. Stocking rate is the number one profit driver for profitability in cattle. Cattle get sold to make up the short fall, of the cash crop income. An alternative option: Increase your herd, combine cover crops for spring and autumn grazing, natural veld for summer grazing. In winter either use the harvest remains, or natural veld again. The risk of cattle farming is lower than cash crop farming, and the rewards are larger. Cash crop farming must be the only business where money is loaned from the bank every year before planting. Is this really sustainable?

Conclusion

It sounds like a tall order, but we need to change our mindsets, management systems and the way we farm. We need to revive nature’s biological processes that have evolved over centuries to sustain all living beings. We have destroyed and ignored these biological systems – and only we can bring them back to life again. Let’s start by implementing the five principles of soil health because in the end, “Restoration pays” – Dr. James Blignaut.

Let us farm with mother nature and not against her.

Photography: Gerry Weber

Read more about regenerative agriculture tips here or follow us on social media

Leave a Reply